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1. Phys.: Condens. Matter 6 (1994) L233-LZ37. Printed in the UK 

LETTER TO THE EDITOR 

A calculation of the cohesive properties of solid methane by a 
local orbital approach, including correlation 

A Barry Kunz 
Department of Electrical Engineering. Michigan Technological University. Houghton, MI 
49931. USA 

Received 2 March 1994 

Abstract. The use of the a5 initio Ham-Fock local orbitals method in solid state computations 
has been limited primarily to the cases of simple solids such as alkali Mides. solid rare gases 
and the ceramics. This usage has been mostly limited to the study of energy band Structures 
and to the case of impurities and point defects in these systems. The only exceptions to these 
statements are energy band calculations for solid methane and calcium, and a study of the edge 
dislocation in mx. In this repoR. techniques to extend the utility of the local orbital methods for 
the determination of geometry are explored. with a particular emphasis on the study of molecular 
solids. The method may be extended to include elevated pressures and also allows the study 
of point or extended defects and impurities simultaneously. It is also possible. using previously 
defined methods, to obtain the energy band s m c t u m  for such systems. In this initial report a 
study of the equilibrium lattice prapenies of solid methane is made. 

Theoretical studies of three-dimensional solids frequently exclude the class of molecular 
solids, the principal exception to this statement being the rare gas solids. In addition some 
attention has been paid to solid Hz, largely due to interest in its possible metallization. More 
complicated molecular solids, those which have more than one atom type in a molecule, 
or perhaps more than one molecular type in a unit cell, are frequently studied i n  one- 
dimensional situations (polymers), rather than in threedimensional situations. The most 
notable exception to this is the case of solid methane ( C h ) ,  for which a number of solid 
state energy band calculations exist (Piela etal 1973, Kunz 1983a). In many respects, these 
calculations have been rather successful in that they account for the dominant features of 
the optical spectrum of solid CHq and also for the observed features in the density of states. 

The existing calculations form an incomplete study of solid CHq in that the equilibrium 
lattice properties, such as the solid density, cohesive energy and solid C-H distance are 
not computed at all, and those equilibrium lattice properties needed for input to a band 
structure calculation (lattice type, lattice parameters) are taken from experiment. In this 
respect, solid CHq might serve as a prototype for computational methodology on more 
complex molecular solids. The particular features that may complicate the study include 
the strong and relatively stiff C-H bond within the CHq molecule and the relatively weak 
bond between pairs of molecules. In this instance, the dominant bonding between CH4 
pairs is the Van der Waals force. Thus any useful computation will have to accommodate 
bonding strengths at two distinctly different levels of strength, both of which ultimately 
determine the density and bonding strength of the solid CHq. 

The method chosen here is a derivative of the Hartree-Fock local orbital method used 
for studies of alkali halide, solid rare gas and CH4 band structures (Kunz 1969, 1983b, Kunz 
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and Mickish 1973). This method has been modified in several significant ways however. 
These modifications include provision for computing the cohesive energy of the solid, with 
and without inclusion of Van der Waais forces as a function of solid and molecular geometry. 
These calculations are accomplished within the local orbital method and do not require the 
calculation of any band structure information as such. Thus these calculations are strictly 
N-body ground state calculations. 

The basis of this calculation is the N-electron Hamiltonian for the system: 

HIVo = EoWo 

Here, lower case is used to reference eleclron properties: m for mass, e for charge, r 
for position. Upper case letters refer to nuclear properties, Z for atomic number and R 
for position. There are n electrons in the system and N nuclei. If one assumes that the 
wavefunction, "0, may be replaced by a single Slater determinant, the usual Hartree-Fock 
approximation results. That is 

F(P)$i = E i 4 i  

P ( T ~ ,  n) = C 4 i ( T l ) $ i ( T * )  
i<n 

- e2p(n .  T Z ) / ~ ~ I  --rz1p(n. n). 

F is termed the Fock operator, p is the first-order density matrix; P is the permutation 
operator that replaces coordinates in space 1 with those in space 2. When solved canonically, 
this results in a Hartree-Fock determination of the band structure and may also provide a 
Iota! energy. A current method for this is the CRYSTAL92 code (Dovesi et a1 1992). The 
current methods for solving the canonical Hartree-Fock problem do not allow for a direct 
inclusion of Van der Waals type forces and therefore are not fully useful for either total 
energy computations for solid C& or for calculation of other properties in which electron 
correlation plays a significant role. 

It is possible to circumvent this problem for nonmetals by employing the method or 
local orbitals (Adams 1962, Gilbert 1963, Kunz 1983b). Here one performs a canonical 
transformation on the Hartree-Fock problem. This is obtained by using a localization 
operator, W,  which interrupts periodicity and therefore allows solutions that decay with 
distance, rather than having Bloch periodicity. This is done in solving the following set of 
equations: 

[ F A  f U A  f pivp]$i t i  * $i 

U, = vz + VA" 

 PA(^,, Q) = x & i ( r i ) d i i ( ~ ) .  

" A  

[ F A  f VI1 + v: - p v z p ] d A i  = EAibAi 

i in A 
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Table 1. The exponents and the coefhcients of the Gaussian basis functions used in this C& 
calculation. The basis functions employ Cartesian Gaussian form as indicated. The radial part 
of the basis function is defined as Ri(?) = rj 4e-V’. 

Orbital Angular type Centre Exponent coefficient 

1 S C 5234.2999 0.000945 5 
770.02922 0.007413 4 
175.70596 0.0367802 
50.530790 0.1308681 
16.739168 0.3214182 

2 s C 6.0883290 0.4472833 
2.313313 3 0.2082753 

3 S C 5.1580033 -0.084 8225 
0.474533 27 0.5728404 

4 s C 0.14915291 1.0 
5 S 
6 P 

C 0.7 1.0 
C 53.537810 0.002661 5 

12.278 300 0.019397 I 
3,744 898 1 0.080 8426 
1.3306550 0.2247661 
0.50924661 0.3889074 

7 P C 0.19832945 0.3875806 
0.07700000 0.138634 7 

8 P C 0.8 1.0 
9 d C 0.9 1.0 
10 S H 102.5 0.001 005 

16.00 0.016821 
1.700 0.183761 
0.330 0.610353 

11 S H 0.085 I .o 
12 P H 0.5 1 .o 

In this set of equations one picks W to be -Vis. Here the system has been partitioned into a 
local fragment designated A, and an environment of A. In periodic systems, the environment 
of A may be composed of fragments identical to A, but displaced to other lattice positions. 
In the usual CHq band structure, one chooses A to be a CHq molecule, but since a direct 
determination of Van der Waals forces between pairs of CHq molecules is needed, the best 
choice of the crystal fragment A is the choice of nearest-neighbour CHq molecule pairs. 
This facilitates a direct computation of the correlation energy (Van der Waals attraction) of 
the solid, by obtaining the pair molecular correlation energy self-consistently in the field of 
the remainder of the solid. Computation of the correlation energy may be done by direct 
use of many-body perturbation theory (mm) on the fragment and summing such a result 
over the entire solid. This was introduced for exciton calculations in alkali halides by 
Goalwin and Kunz (1986) and extended by Kunz and co-workers (1988). The second-order 
contribution to the total energy of fragment A is given as 

This then is the system of equations to be solved for the fragment consisting of two CH4 
molecules in the periodic environment of other C& pairs. 
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The only remaining approximations consist of fixing the H atoms in a regular array, 
tetrahedrally coordinated to each C, and also periodic, and the use of basis set expansion 
techniques to solve the equations. This ignores the fact that while each C has four H 
tetrahedrally coordinated to it, the H in solid CHq are rotationally disordered. This is a 
reasonable approximation in that the rotational disorder implies that the rotational state of 
a given CH4 molecule is of small consequence to the total energy. The basis sets used are 
chosen by minimizing the energy of the individual C& molecule in free space, to second 
order in mPT.  The basis set is a relatively rich one, and is shown in table 1. 
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Figure 1. The binding energy of solid C h  is given as a funclion of Ihe latrice constant. 
Distances x e  in mmic  units. and energies ase in elarronvolts. The zero of energy refers to an 
ensemble of C h  molecules infinitely separated from each other. The correlated computation 
has ifs poinrs designated by the symbol *, n'hereas the Hmree-Fock computation lm its points 
labelled by an x. The curve for the correlated dcvlmion has been obtained from a cubic spline 
fit to the computed points, 

The lattice used in these studies is the FCC lattice, which is the lattice occupied by the C 
atoms in solid CH4 as determined experimentally (Shallamach 1939, Press 1972, Wannier 
1959). Within this lattice, the C-C distances and also the C-H distances are allowed to 
vary. It was rapidly determined that the C-H separation for minimum total energy of the 
solid was essentially identical to that found in the free molecule, and that small decreases 
in the C-H separation occurred only for significant compression of the solid. Therefore 
in the results to follow the C-H separation in the free CHq is used. The crystal binding 
energy is shown in both the Hartree-Fock approximation and including Van der Waals terms 
in figure 1. The zero of binding energy refers to the energy per molecule when the CH4 
molecules are at infinite separation. The lattice constant is computed to be 11.35 au (the 
experimental value is 11.30 au) for an error of 0.5%. The binding energy is found to be 
0.107 eVImolecule (the experimental value is 0.117 eV) for an error of about 10%. The 
binding is entirely due to Van der Waals forces as may be readily seen from the figure. It 
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is also worth noting that the use of the extensive basis set was needed in order to obtain 
the relatively accurate binding energy and the lattice constant. 

In conclusion, an extension to the local orbital method, including both HartreeFock 
terms and Van der Waals terms, has been developed and used here to predict the lattice 
parameter and the binding energy of solid C a .  Accurate results were possible, and care 
was required in the choice of the basis set to enable an accurate determination of the Van 
der Waals energy. The method allows determination of geometries within the fragments 
chosen to represent the crystal as well as the geometries of the fragments with respect to 
each other. This capability is of minimal use here as individual CHq molecules maintain the 
geometry of the free C& inside the solid, but may well be significant in studies of more 
complex molecular solids. Such studies are in progress. 

This research was supported in part by the Office of Naval Research, Grant N00014-91-J- 
1953. 
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